Study material of B.Sc.(Semester - II) US02CMTH01

(Quadric surfaces)

Prepared by Nilesh Y. Patel

Head, Mathematics Department, V.P. and R.P.T.P. Science College

UNIT-2

Definition 1. Every quadratic equation in x, y and z represents a quadric surface.

To discuss quadric surfaces we have to consider following points :

(1) Symmetry with respect to plane :

- The surface f(x, y, z) = 0 is said to be symmetric with respect to the xy-plane, if it remains unchanged on replacing z by -z.
- The surface f(x, y, z) = 0 is said to be symmetric with respect to the yz- plane, if it remains unchanged on replacing x by -x.
- The surface f(x, y, z) = 0 is said to be symmetric with respect to the zx- plane, if it remains unchanged on replacing y by -y.

(2) Intercepts :

- x-intercept : Put y = z = 0
- y-intercept : Put x = z = 0
- z-intercept : Put x = y = 0
- (3) Trace on the plane : The intersection of surface f(x, y, z) = 0 with the xy-,yz- and zx- plane is called xy-,yz- and zx- trace respectively on the plane.
 - xy-trace : Put z = 0
 - yz-trace : Put x = 0
 - zx-trace : Put y = 0
- (4) Section by planes : The intersection of surface with plane P is called a section of the surface and it is obtained by considering the two equation simultaneously.

Sections by planes which are parallel to the coordinate plane (such as $x = x_1$,

 $y = y_1, z = z_1$) are vary helpful in visualizing the shape of the surface, we shall consider section by $x = x_1, y = y_1$ and $z = z_1$ planes. Different Type of quadric surfaces 2.

Ellipsoid : The surface given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is called an ellipsoid.

Elliptic hyperboloid of one sheet : The surface given by any one of

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \ \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \ \text{and} \ -\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \ \text{is called an elliptic}$ hyperboloid of one sheet.

Elliptic hyperboloid of two sheet : The surface given by any one of $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ and $-\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ is called an elliptic hyperboloid of two sheet.

Elliptic Paraboloid: The surface given by any one of

 $\frac{x^2}{c^2} + \frac{y^2}{b^2} = cz, \quad \frac{x^2}{c^2} + \frac{z^2}{c^2} = by \text{ and } \quad \frac{y^2}{b^2} + \frac{z^2}{c^2} = ax \text{ is called an elliptic Paraboloid.}$

hyperbolic Paraboloid : The surface given by any one of

 $\frac{x^2}{z^2} - \frac{y^2}{z^2} = cz, \ \frac{x^2}{a^2} - \frac{z^2}{c^2} = by \text{ and } \frac{y^2}{b^2} - \frac{z^2}{c^2} = ax \text{ is called a hyperbolic Paraboloid.}$

Elliptic cone : The surface given by any one $\frac{x^2}{c^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}, \ \frac{x^2}{a^2} + \frac{z^2}{c^2} = \frac{y^2}{b^2} \text{ and } \frac{y^2}{b^2} + \frac{z^2}{c^2} = \frac{x^2}{a^2} \text{ is called an elliptic cone.}$

Examples 3. Identify, describe and sketch the surface.

(1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1; (b \ge a, c). - - - - (*)$$

Solution : Here given surface is ellipsoid.

(i) Symmetry w.r.t plane : Here all powers of x, y & z are even power. Therefore it is symmetric w.r.t xy-plane, yz-plane and zx-plane.

(ii) Intercepts :

x-int : Put y = z = 0 we get $\frac{x^2}{a^2} = 1 \Rightarrow x^2 = a^2 \Rightarrow \boxed{x = \pm a}$ **y-int :** Put x = z = 0 we get $\frac{y^2}{b^2} = 1 \Rightarrow y^2 = b^2 \Rightarrow y = \pm b$ **z-int** : Put x = y = 0 we get $\frac{z^2}{c^2} = 1 \Rightarrow z^2 = c^2 \Rightarrow \boxed{z = \pm c}$

(iii) Trace on the Planes :

xy-trace : Put z = 0, we get $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Which is ellipse. **yz-trace :** Put x = 0, we get $\frac{y^2}{b_0^2} + \frac{z^2}{c_0^2} = 1$. Which is ellipse. **zx-trace :** Put y = 0, we get $\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1$. Which is ellipse.

(iv) Section by planes :

Section by
$$x = x_1$$
 planes : Put $x = x_1$ in (*), we get

$$\frac{x_1^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \Rightarrow \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 - \frac{x_1^2}{a^2} \Rightarrow \frac{y^2}{b^2} + \frac{z^2}{c^2} = k,$$

where $k = 1 - \frac{x_1^2}{a^2}$. $\Rightarrow \frac{y^2}{kb^2} + \frac{z^2}{kc^2} = 1$, which is ellipse, if k > 0 i.e. if $1 - \frac{x_1^2}{a^2} > 0$ i.e. if $-a < x_1 < a$. Thus section by $x = x_1$ planes is an ellipse.

Section by $y = y_1$ planes : Put $y = y_1$ in (*), we get $\frac{x^2}{a^2} + \frac{y_1^2}{b^2} + \frac{z^2}{c^2} = 1 \Rightarrow \frac{x^2}{a^2} + \frac{z^2}{c^2} = 1 - \frac{y_1^2}{b^2} \Rightarrow \frac{x^2}{a^2} + \frac{z^2}{c^2} = k,$ where $k = 1 - \frac{y_1^2}{b^2}$. $\Rightarrow \frac{x^2}{ka^2} + \frac{z^2}{kc^2} = 1$, which is ellipse, if k > 0 i.e. if $1 - \frac{y_1^2}{b^2} > 0$ i.e. if $-b < y_1 < b$. Thus section by $y = y_1$ planes is an ellipse.

Section by
$$z = z_1$$
 planes : Put $z = z_1$ in (*), we get
 $\frac{x_1^2}{a^2} + \frac{y^2}{b^2} + \frac{z_1^2}{c^2} = 1 \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{z_1^2}{c^2} \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = k,$
where $k = 1 - \frac{z_1^2}{c^2}$.
 $\Rightarrow \frac{x^2}{ka^2} + \frac{y^2}{kb^2} = 1$, which is ellipse, if $k > 0$ i.e. if $1 - \frac{z_1^2}{c^2} > 0$ i.e. if $-c < z_1 < c$. Thus section by $z = z_1$ planes is an ellipse.

(2)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1. - - - - (*)$$

Solution : Here given surface is elliptic hyperboloid of one sheet.

- (i) Symmetry w.r.t plane : Here all powers of x, y & z are even power. Therefore it is symmetric w.r.t xy-plane , yz-plane and zx-plane.
- (ii) Intercepts :

- **x-int :** Put y = z = 0 we get $\frac{x^2}{a^2} = 1 \Rightarrow x^2 = a^2 \Rightarrow \boxed{x = \pm a}$ **y-int :** Put x = z = 0 we get $\frac{\ddot{y}^2}{b^2} = 1 \Rightarrow y^2 = b^2 \Rightarrow y = \pm b$ **z-int :** Put x = y = 0 we get $\frac{z^2}{c^2} = 1 \Rightarrow z^2 = -c^2 \Rightarrow \text{not possible}$
- (iii) Trace on the Planes :

xy-trace : Put z = 0, we get $\frac{x^2}{a_2^2} + \frac{y^2}{b_2^2} = 1$. Which is ellipse. *yz*-trace : Put x = 0, we get $\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$. Which is hyperbola. *zx*-trace : Put y = 0, we get $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$. Which is hyperbola.

(iv) Section by planes :

Section by
$$x = x_1$$
 planes : Put $x = x_1$ in (*), we get

$$\frac{x_1^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \Rightarrow \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 - \frac{x_1^2}{a^2} \Rightarrow \frac{y^2}{b^2} - \frac{z^2}{c^2} = k$$
, where $k = 1 - \frac{x_1^2}{a^2}$.
 $\Rightarrow \frac{y^2}{kb^2} - \frac{z^2}{kc^2} = 1$, which is hyperbola, if $k > 0$ i.e. if $1 - \frac{x_1^2}{a^2} > 0$ i.e. if
 $-a < x_1 < a$. Thus section by $x = x_1$ planes is an hyperbola.

Section by $y = y_1$ planes : Put $y = y_1$ in (*), we get $\frac{x^2}{a^2} + \frac{y_1^2}{b^2} - \frac{z^2}{c^2} = 1 \Rightarrow \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{y_1^2}{b^2} \Rightarrow \frac{x^2}{a^2} - \frac{z^2}{c^2} = k$, where $k = 1 - \frac{y_1^2}{b^2}$. $\Rightarrow \frac{x^2}{ka^2} - \frac{z^2}{kc^2} = 1$, which is hyperbola, if k > 0 i.e. if $1 - \frac{y_1^2}{b^2} > 0$ i.e. if $-b < y_1 < b$. Thus section by $y = y_1$ planes is an hyperbola.

Section by
$$z = z_1$$
 planes : Put $z = z_1$ in (*), we get

$$\frac{x_1^2}{a^2} + \frac{y^2}{b^2} - \frac{z_1^2}{c^2} = 1 \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{z_1^2}{c^2} \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = k$$
, where $k = 1 + \frac{z_1^2}{c^2}$.
 $\Rightarrow \frac{x^2}{ka^2} + \frac{y^2}{kb^2} = 1$, which is ellipse, if $k = 1 + \frac{z_1^2}{c^2} > 0$. Thus section by $z = z_1$ planes is an ellipse.

(3) $-\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1. - - - - (*)$

Solution : Here given surface is elliptic hyperboloid of two sheet.

- (i) Symmetry w.r.t plane : Here all powers of x, y & z are even power. Therefore it is symmetric w.r.t xy-plane, yz-plane and zx-plane.
- (ii) Intercepts :

x-int: Put y = z = 0 we get $\frac{x^2}{a^2} = 1 \Rightarrow x^2 = -a^2 \Rightarrow \text{not possible}$ **y-int**: Put x = z = 0 we get $\frac{y^2}{b^2} = 1 \Rightarrow y^2 = b^2 \Rightarrow y = \pm b$ **z-int**: Put x = y = 0 we get $\frac{z^2}{c^2} = 1 \Rightarrow z^2 = -c^2 \Rightarrow \text{not possible}$

(iii) Trace on the Planes :

xy-trace : Put z = 0, we get $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Which is hyperbola. *yz*-trace : Put x = 0, we get $\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$. Which is hyperbola. *zx*-trace : Put y = 0, we get $\frac{x^2}{a^2} + \frac{z^2}{c^2} = -1$. Which is not possible.

(iv) Section by planes :

Section by $x = x_1$ planes : Put $x = x_1$ in (*), we get $-\frac{x_1^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \Rightarrow \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 + \frac{x_1^2}{a^2} \Rightarrow \frac{y^2}{b^2} - \frac{z^2}{c^2} = k$, where $k = 1 - \frac{x_1^2}{a^2}$. $\Rightarrow \frac{y^2}{kb^2} - \frac{z^2}{kc^2} = 1$. Thus section by $x = x_1$ planes is an hyperbola. Section by $y = y_1$ planes : Put $y = y_1$ in (*), we get $-\frac{x^2}{a^2} + \frac{y_1^2}{b^2} - \frac{z^2}{c^2} = 1 \Rightarrow \frac{x^2}{a^2} + \frac{z^2}{c^2} = \frac{y_1^2}{b^2} - 1 \Rightarrow \frac{x^2}{a^2} + \frac{z^2}{c^2} = k$, where $k = \frac{y_1^2}{b^2} - 1$. $\Rightarrow \frac{x^2}{ka^2} + \frac{z^2}{kc^2} = 1$, which is hyperbola, if k > 0 i.e. if $\frac{y_1^2}{b^2} 1 - 1 > 0$ i.e. if $-b > y_1 > b$. Thus section by $y = y_1$ planes is an ellipse.

Section by $z = z_1$ planes : Similarly section by $z = z_1$ planes is $-\frac{x^2}{ka^2} + \frac{y^2}{kb^2} = 1$. Thus section by $z = z_1$ planes is an hyperbola.

(4)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = cz; (c > 0). - - - - (*)$$

Solution : Here given surface is hyperbolic Paraboloid.

- (i) Symmetry w.r.t plane : Here all powers of x and y are even power. Therefore it is symmetric w.r.t yz-plane and zx-plane. It is not symmetric w.r.t xy-plane.
- (ii) Intercepts :
 - **x-int**: Put y = z = 0 we get $\frac{x^2}{a^2} = 0 \Rightarrow x^2 = 0 \Rightarrow \boxed{x = 0}$ **y-int**: Put x = z = 0 we get $\frac{-y^2}{b^2} = 0 \Rightarrow -y^2 = 0 \Rightarrow \boxed{y = 0}$ **z-int**: Put x = y = 0 we get $cz = 1 \Rightarrow cz = 0 \Rightarrow \boxed{z = 0}$
- (iii) Trace on the Planes :

xy-trace : Put z = 0, we get $\frac{x^2}{a^2} = \frac{y^2}{b^2} = 0 \Rightarrow x = \pm \frac{a}{b}y$.

Thus *xy*-trace is pair of lines through the origin. *yz*-trace : Put x = 0, we get $\frac{-y^2}{b^2} = cz \Rightarrow y^2 = -b^2cz$. Which is parabola. *zx*-trace : Put y = 0, we get $\frac{x^2}{a^2} = cz \Rightarrow x^2 = a^2cz$. Which is parabola.

(iv) Section by planes :

Section by
$$x = x_1$$
 planes : Put $x = x_1$ in (*), we get

$$\frac{x_1^2}{a^2} - \frac{y^2}{b^2} = cz \Rightarrow y^2 = -b^2 \left[cz - \frac{x_1^2}{a^2} \right].$$
 Which is parabola.
Section by $y = y_1$ planes : Put $y = y_1$ in (*), we get

$$\frac{x^2}{a^2} - \frac{y_1^2}{b^2} = cz \Rightarrow x^2 = a^2 \left[cz + \frac{y_1^2}{b^2} \right].$$
 Which is parabola.
Section by $z = z_1$ planes : Put $z = z_1$ in (*), we get

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = cz_1 \Rightarrow \frac{x^2}{ka^2} - \frac{y^2}{kb^2} = 1.$$
 Which is hyperbola, When $z_1 > 0.$
(5) $\frac{x^2}{a^2} + \frac{z^2}{c^2} = \frac{y^2}{b^2}. - - - - (*)$

Solution : Here given surface is elliptic cone.

- (i) Symmetry w.r.t plane : Here all powers of x, y & z are even power. Therefore it is symmetric w.r.t xy-plane , yz-plane and zx-plane.
- (ii) Intercepts :

x-int: Put y = z = 0 we get $\frac{x^2}{a^2} = 0 \Rightarrow x^2 = 0 \Rightarrow \boxed{x = 0}$ **y-int**: Put x = z = 0 we get $\frac{y^2}{b^2} = 0 \Rightarrow y^2 = 0 \Rightarrow \boxed{y = 0}$ **z-int**: Put x = y = 0 we get $\frac{z^2}{c^2} = 0 \Rightarrow z^2 = 0 \Rightarrow \boxed{z = 0}$ (iii) Trace on the Planes :

xy-trace : Put z = 0, we get $\frac{x^2}{a^2} = \frac{y^2}{b^2} \Rightarrow \frac{x}{a} = \pm \frac{y}{b}$. Which is pair of lines through the origin. *yz*-trace : Put x = 0, we get $\frac{y^2}{b^2} = \frac{z^2}{c^2} \Rightarrow \frac{z}{c} = \pm \frac{y}{b}$. Which is pair of lines through the origin. *zx*-trace : Put y = 0, we get $\frac{x^2}{a^2} + \frac{z^2}{c^2} = 0 \Rightarrow x = z = 0$. Thus *zx*-trace is (0,0,0).

(iv) Section by planes :

Section by
$$x = x_1$$
 planes : Put $x = x_1$ in (*), we get
 $\frac{x_1^2}{a^2} + \frac{z^2}{c^2} = \frac{y^2}{b^2} \Rightarrow \frac{y^2}{b^2} - \frac{z^2}{c^2} = \frac{x_1^2}{a^2} \Rightarrow \frac{y^2}{b^2} - \frac{z^2}{c^2} = k$, where $k = \frac{x_1^2}{a^2}$.
 $\Rightarrow \frac{y^2}{kb^2} - \frac{z^2}{kc^2} = 1$. Which is hyperbola.

Section by $y = y_1$ planes : Put $y = y_1$ in (*), we get $\frac{x^2}{a^2} + \frac{z^2}{c^2} = \frac{y_1^2}{b^2} \Rightarrow \frac{x^2}{ka^2} + \frac{z^2}{kc^2} = 1$ where $k = 1 - \frac{y_1^2}{b^2}$. Which is ellipse if k > 0.

Section by
$$z = z_1$$
 planes : Put $z = z_1$ in (*), we get

$$\frac{x^2}{a^2} + \frac{z_1^2}{c^2} = \frac{y^2}{b^2} \Rightarrow \frac{y^2}{b^2} - \frac{x^2}{a^2} = \frac{z_1^2}{c^2} \Rightarrow \frac{y^2}{b^2} - \frac{x^2}{a^2} = k$$
, where $k = \frac{z_1^2}{c^2}$
 $\Rightarrow \frac{y^2}{kb^2} - \frac{x^2}{ka^2} = 1$. Which is hyperbola.

Examples 4. Identify, describe and sketch the surface.

(1) $\frac{x^2}{9} - \frac{y^2}{16} - \frac{z^2}{9} = 1 - - - - (*)$

Solution : Here given surface is elliptic hyperboloid of two sheet.

(i) Symmetry w.r.t plane : Here all powers of x, y and z are even power. There-

fore it is symmetric w.r.t xy-plane,yz-plane and zx-plane.

- (ii) Intercepts :
 - **x-int**: Put y = z = 0 we get $\frac{x^2}{9} = 1 \Rightarrow x^2 = 9 \Rightarrow \boxed{x = \pm 3}$ **y-int**: Put x = z = 0 we get $\frac{-y^2}{16} = 1 \Rightarrow y^2 = -16 \Rightarrow \boxed{\text{not possible}}$ **z-int**: Put x = y = 0 we get $\frac{-z^2}{9} = 1 \Rightarrow z^2 = -9 \Rightarrow \boxed{\text{not possible}}$
- (iii) Trace on the Planes :

xy-trace : Put z = 0, we get $\frac{x^2}{9} - \frac{y^2}{16} = 1$. Which is hyperbola. yz-trace : Put x = 0, we get $-\frac{y^2}{16} - \frac{z^2}{9} = 1 \Rightarrow \frac{y^2}{16} + \frac{z^2}{9} = -1$. Which is not possible.

zx-trace : Put y = 0, we get $\frac{x^2}{9} - \frac{z^2}{9} = 1$. Which is hyperbola.

(iv) Section by planes :

Section by
$$x = x_1$$
 planes : Put $x = x_1$ in (*), we get

$$\frac{x_1^2}{9} - \frac{y^2}{16} - \frac{z^2}{9} = 1 \Rightarrow \frac{y^2}{16} + \frac{z^2}{9} = \frac{x_1^2}{9} - 1 \Rightarrow \frac{y^2}{k16} + \frac{z^2}{k9} = 1$$
 which is ellipse,
when $k = \frac{x_1^2}{9} - 1 > 0$, i.e when $x_1^2 > 9$, i.e when $-3 > x_1 > 3$.
Section by $y = y_1$ planes : Put $y = y_1$ in (*), we get

$$\frac{x^2}{9} - \frac{y_1^2}{16} - \frac{z^2}{9} = 1 \Rightarrow \frac{x^2}{9} - \frac{z^2}{9} = 1 + \frac{y_1^2}{16} \Rightarrow \frac{x^2}{k9} - \frac{z^2}{k9} = 1$$
. Which is hyperbola.
Section by $z = z_1$ planes : Put $z = z_1$ in (*), we get

$$\frac{x^2}{9} - \frac{y^2}{21} = \frac{z^2}{10} + \frac{x^2}{21} = \frac{y^2}{10} + \frac{z^2}{21} = \frac{x^2}{10} + \frac{y^2}{10} = \frac{x^2}{10} + \frac{x^2}{10} + \frac{y^2}{10} = \frac{x^2}{10} + \frac{x$$

 $\frac{x}{9} - \frac{y}{16} - \frac{z_1}{9} = 1 \Rightarrow \frac{x}{9} - \frac{y}{16} = 1 + \frac{z_1}{9} \Rightarrow \frac{x}{k9} - \frac{y}{k16} = 1.$ Which is hyperbola.

(2)
$$\frac{y^2}{4} - \frac{z^2}{1} = 2x$$

Solution : Here given surface is hyperbolic paraboloid.

- (i) Symmetry w.r.t plane : Here all powers of y and z are even power. Therefore it is symmetric w.r.t xy-plane and zx-plane. It is not symmetric w.r.t yz-plane.
- (ii) Intercepts :
 - **x-int** : Put y = z = 0 we get $2x = 0 \Rightarrow x = 0$ **y-int**: Put x = z = 0 we get $\frac{y^2}{4} = 0 \Rightarrow y^2 = 0 \Rightarrow y = 0$ **z-int**: Put x = y = 0 we get $\frac{z^2}{1} = 0 \Rightarrow z^2 = 0 \Rightarrow z = 0$
- (iii) Trace on the Planes :

xy-trace : Put z = 0, we get $\frac{y^2}{4} = 2x \Rightarrow y^2 = 8x$. Thus xy-trace is parabola

yz-trace : Put x = 0, we get $\frac{y^2}{4} - \frac{z^2}{1} = 0 \Rightarrow y = \pm 2z$. Which is pair of lines passing through the origin

zx-trace : Put y = 0, we get $-\frac{z^2}{1} = 2x \Rightarrow z^2 = -2x$ Which is Parabola.

(iv) Section by planes :

Section by $x = x_1$ planes : Put $x = x_1$ in (*), we get $\frac{y^2}{4} - \frac{z^2}{1} = 2x_1 \Rightarrow \frac{y^2}{4} - \frac{z^2}{1} = k \Rightarrow \frac{y^2}{4k} - \frac{z^2}{k} = 1$, where $k = 2x_1$. Which is hyperbola.

Section by
$$y = y_1$$
 planes : Put $y = y_1$ in (*), we get
 $\frac{y_1^2}{4} - \frac{z^2}{1} = 2x \Rightarrow -\frac{z^2}{1} = 2x - \frac{y_1^2}{4} \Rightarrow z^2 = -\left[2x - \frac{y_1^2}{4}\right]$. Which is Parabola.
Section by $z = z_1$ planes : Put $z = z_1$ in (*), we get
 $\frac{y^2}{4} - \frac{z_1^2}{1} = 2x \Rightarrow \frac{y^2}{4} = 2x + \frac{z_1^2}{1} \Rightarrow y^2 = 4\left[2x + \frac{z_1^2}{1}\right]$. which is Parabola.

Example 5. Identify the given surface $9x^2 + 4y^2 - 9z^2 - 18x - 8y - 18z = 32$.

Solution : Here, $9x^2 + 4y^2 - 9z^2 - 18x - 8y - 18z = 32$.

$$\Rightarrow 9(x^2 - 2x) + 4(y^2 - 2y) - 9(z^2 + 2z) = 32
\Rightarrow 9(x^2 - 2x + 1 - 1) + 4(y^2 - 2y + 1 - 1) - 9(z^2 + 2z + 1 - 1) = 32
\Rightarrow 9(x - 1)^2 - 9 + 4(y - 1)^2 - 4 - 9(z + 1)^2 + 9 = 32
\Rightarrow 9(x - 1)^2 + 4(y - 1)^2 - 9(z + 1)^2 = 36
\Rightarrow \frac{(x - 1)^2}{4} + \frac{(y - 1)^2}{9} - \frac{(z + 1)^2}{4} = 1$$

Translating the origin to (1, 1, -1) the equation of the surface in the new system becomes

$$\frac{{x'}^2}{4} + \frac{{y'}^2}{9} - \frac{{z'}^2}{4} = 1$$

Which is elliptic hyperboloid of one sheet.

Example 6. Show that $Ax^2 + By^2 + Cz^2 = D$ represents an elliptic hyperboloid of one sheet if one coefficient is negative and D > 0.

Solution : Suppose A < 0, B > 0, C > 0 and given D > 0. Let A' = -A > 0 then given equation becomes $-A'x^2 + By^2 + Cz^2 = D$

$$-\frac{x^{2}}{\frac{D}{A'}} + \frac{y^{2}}{\frac{D}{B}} + \frac{x^{2}}{\frac{D}{C}} = 1 - - - - - (*)$$

where, $\frac{D}{A'}, \frac{D}{B}, \frac{D}{C}$ are all positive.

Let $\frac{D}{A'} = a^2$, $\frac{D}{B} = b^2$, $\frac{D}{C} = c^2$, then by (*) $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{x^2}{c^2} = 1$. Which is elliptic hyperboloid of one sheet.

Describe sperical polar coordinate 7. The frame of reference consists of a point O (the pole or origin) and two mutually perpendicular rays \overrightarrow{OA} and \overrightarrow{OB} originating from it. Let α be the plane containing \overrightarrow{OA} and perpendicular to \overrightarrow{OB} . Then a point P is given by the coordinates (ρ, θ, ϕ) , where

$$\rho = OP, \qquad \rho \ge 0$$

 $\theta = \angle(\overrightarrow{OA}, \text{ Projection of } \overrightarrow{OP} \text{ on } \alpha), \quad 0 \le \theta \le 2\pi$

and

$$\phi = \angle (\overrightarrow{OB}, \overrightarrow{OP}), \quad 0 \le \phi \le \tau$$

To determine the coordinates of P, take $PM\bot$ plane $\alpha.$ Then figure (a)

$$\rho = OP, \ \theta = \angle AOM, \ \phi = \angle BOP = \angle OPM.$$

To plot a point $P(\rho, \theta, \phi)$, make an angle of measure θ at O, with \overrightarrow{OA} as the initial side; on the terminal side \overrightarrow{OM} , make an angle of measure $\frac{\pi}{2} - \phi$ at O, in the plane perpendicular to α , that is, plane MOB; on the terminal side of this angle, take ρ units to get $P(\rho, \theta, \phi)$.

The relevance of the system with a sphere is now very clear. Let C denotes the circle of intersection of the sphere, with center O and radius ρ , and the plane α . Suppose C intersects \overrightarrow{OA} in R. Then, to locate $P(\rho, \theta, \phi)$. We move from R then move along C to go to S, such that $\angle ROS = \theta$; move along the great circle SB. Now, to get P, by taking $\angle SOP = \frac{\pi}{2} - \phi$. Thus variation in θ and ϕ give us. Point on the sphere with center O and radius ρ . Hence the name spherical polar coordinates.

Example 8. Plot the point $(3, 30^0, 90^0)$ and $(2, 7\pi/4, \pi/6)$.

Example 9. By proper choice of axes, the cartesian coordinate (x, y, z) of a point can be expressed in terms of spherical coordinates (ρ, θ, ϕ) as

$$x = \rho \sin \phi \cos \theta, \quad y = \rho \sin \phi \sin \theta, \quad z = \rho \cos \phi.$$

Solution : Let three mutually perpendicular lines XOX', YOY' and ZOZ' be the x, -y- and z- axes respectively. In the polar frame of reference, choose the pole at origin and the two axes along the positive x- and z- axes. Then the plane α is the xy - plane (figure (a)). Let P be the point whose Cartesian and polar coordinate are (x, y, z) and (ρ, θ, ϕ) respectively.Let $PM \perp$ plane α and $MN \perp x$ - axes. Then,

$$OP = \rho$$
, $\angle OPM = \phi$, and $\angle MON = \theta$.

Form right $\triangle OMP$, $OM = \rho \sin \phi$, $MP = \rho \cos \phi$ and form right $\triangle ONM$, $MN = \rho \sin \phi \sin \theta$, $ON = \rho \sin \phi \cos \theta$.

$$\therefore x = ON = \rho \sin \phi \cos \theta, \quad y = MN = \rho \sin \phi \sin \theta, \quad z = MP = \rho \cos \phi.$$

Example 10. Prove that the equation r = a, a positive constant represent a sphere with center at O and radius a.

Solution : Let $P(\rho, \theta, \phi)$ be a point for which r = a. Then OP = a.

 $\Rightarrow P$ is a constant distance *a* from the pole *O*.

 \Rightarrow P lies on a sphere with centre at O and radius a.

Example 11. Prove that $\theta = \beta, \beta$ a constant, $\beta \in [0, 2\pi)$, is a half - plane perpendicular to α and containing \overrightarrow{OC} , where $C \in \alpha$ such that $\angle AOC = \beta$.

Solution : Let $P(\rho, \theta, \phi)$ be any point on the surface $\theta = \beta$. If $PM \perp \alpha$, then $\angle AOM = \beta$ for every position of P. But there is no restriction on ρ or ϕ . If $\angle AOC = \beta$, then our set consists of all points whose projection on α lies on \overrightarrow{OC} shown in figure(). Hence it is set containing all points on the half-plane perpendicular to α and containing \overrightarrow{OC} . In given figure (), it is the half-plane OCB. **Example 12.** Prove that $\phi = \gamma, \gamma$ a constant, $\gamma \in (\theta, \pi/2)$, is the upper half of cone, with vertex at O, axis along the positive z-axis and the semivertical angle γ .

Solution : Take any point $P(r, \theta, \phi)$, with $\phi = \gamma$. \therefore P is (r, θ, γ) .

Now γ is fixed. Keep θ also fixed and let r vary. It gives the ray \overrightarrow{OP} . Now let θ also vary, so that only $\phi = \gamma$ is fixed. The ray \overrightarrow{OP} will rotate about the z-axis (fig.()) always making an angle with it.

Hence the surface consists of at rays \overrightarrow{OP} making an angle γ with \overrightarrow{OZ} . That is, we have the upper half of the right circular cone, whose vertex is at O, axis along \overrightarrow{OZ} and semi vertical angle γ .

Describe Cylindric polar coordinate 13. The frame of reference consists of to mutually perpendicular ray \overrightarrow{OA} and \overrightarrow{OB} , originating form a common point O. Let α be the plane containing \overrightarrow{OA} and perpendicular to \overrightarrow{OB} . Then a point P in space, is assigned the coordinates (ρ, θ, z) , where, given figure and

$$\rho = \text{ projection of } \overrightarrow{OP} \text{ on } \alpha, \qquad \rho > 0.$$

$$\theta = (\overrightarrow{OA}, \text{ projection of } \overrightarrow{OP} \text{ on } \alpha), \qquad 0 \le \theta \le 2\pi$$

and

$$z =$$
oriented $d(P, \alpha), \quad -\infty \le z \le \infty$

To determine the coordinate of P, take $PM \perp$ plane α . Then, form figure ()

$$P = OM, \quad \theta = \angle AOM, \quad z = MP.$$

Example 14. Plot the points $(2, \pi/4, 3)$ and $(2, \pi/4, -3)$.

Solution :

Draw $\angle AOR = \frac{\pi}{4}$ in the anticlockwise direction form \overrightarrow{OA} shown in given figure : (). On \overrightarrow{OR} take $M \ni OM = 2$. Take line $l \parallel OB$, choose P and Q on $l \ni MP = 3$ units upwardsand MQ = 3 units downwards. Figure () shows $P(2, \pi/4, 3)$ and $Q(2, \pi/4, -3)$.

Example 15. Describe the surfaces given by (i) $\rho = 3$ (ii) z = 4 (iii) $\theta = 0$.

Solution : (i) $\rho = 3$.

Any point P on the surface is $(3, \theta, z)$. This means that whatever the θ , the projection M of P on α has to be such that OM = 3.

That is, the projection M of P on α lies on the circle about O, with radius 3.

As z varies now, we get points on the right circular cylinder, whose base is this circle.

(*ii*) z = 4

Any point of the surface is $(\rho, \theta, 4)$. As ρ and θ vary, the point of projection can be any point of the plane α . Since z = 4, fixed, the point of the surface is always at a distance for form α , and above it. So the surface is a plane parallel to α , at a distance of 4 units above it figure ().

(*iii*) $\theta = 0$

Any point of the surface is $P(\rho, 0, z)$. Now $\theta = 0$. Hence the points of projection M of P on α , must lie on \overrightarrow{OA} figure: (). So the points F of the surface must lie in the vertical half-plane OAB.

This gives the half-plane OAB containing \overrightarrow{OA} , or, half of the *zx*-plane with $x \ge 0$.

Example 16. Find Jacobian of $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$.

Solution :